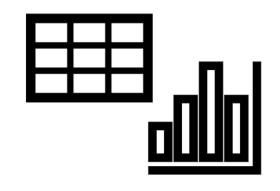
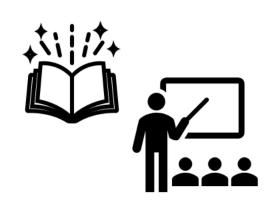
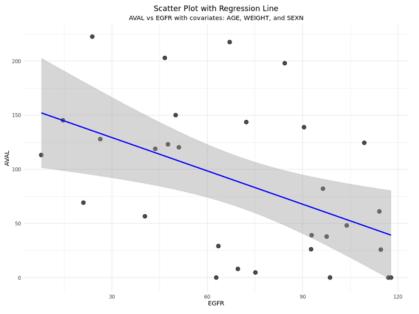
A New Era for R Programming: How Al is Changing the Way We Work

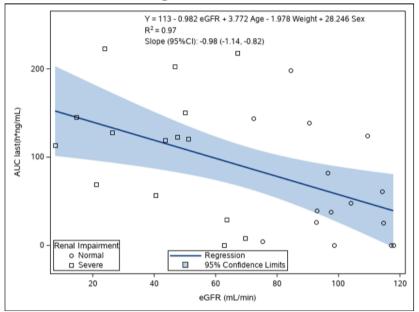

Jiaqi Song Clinical & Statistical Programming, IDAR 2025.3.28 Shanghai

Disclaimer

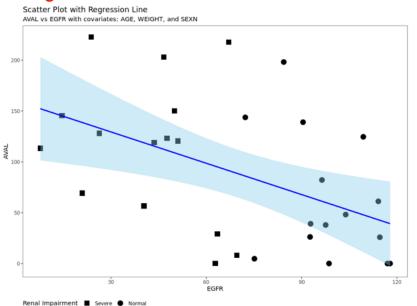

- To avoid conflicts of interest, this presentation does not specify which AI tools are used when discussing AI.
- Some answers in this presentation are generated by Al and do not represent personal views.
 Please cite with caution.
- All images in this presentation are Al-generated and do not have copyright issues.
- The data analysis in this presentation is based on dummy data, with no real data involved.

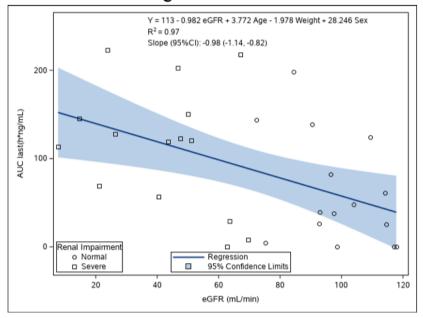
 The results are for illustrative purposes only and have no practical significance.
- This presentation is for informational purposes only and does not represent professional guidance or advice. Any views and opinions expressed during this presentation are those of the presenters and do not necessarily reflect the views or policies of Johnson & Johnson.



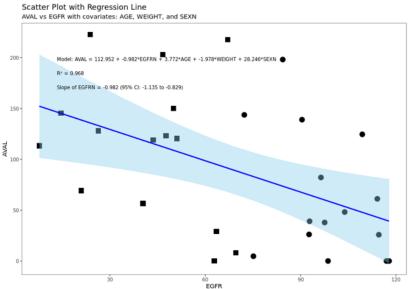

R for TLG

R Shiny


R Learning


Production by SAS

dataframe pkdata contains the following variables:
'AVAL'(type:numeric);'AGE'(type:numeric);'WEIGHT'(type:numeric)
'SEXN'(type:numeric);'RFGROUP'(type:character);'EGFRN'(type:numeric)
Create a R graph based on pkdata, y var is AVAL, x var is EGFRN.
Add scatter plot and a regression line with 95%CI band.

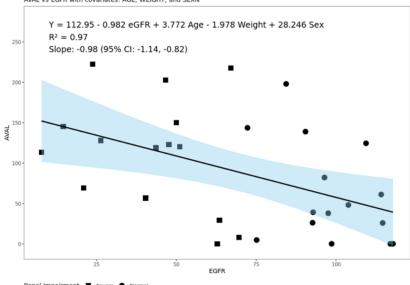


Production by SAS

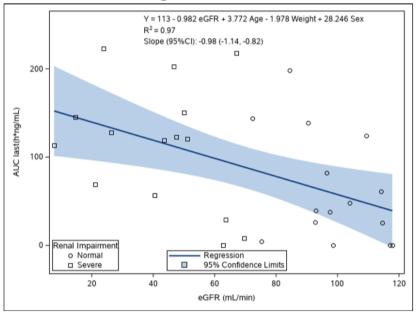
dataframe pkdata contains the following variables:
'AVAL'(type:numeric);'AGE'(type:numeric);'WEIGHT'(type:numeric)
'SEXN'(type:numeric);'RFGROUP'(type:character);'EGFRN'(type:numeric)
Create a R graph based on pkdata, y var is AVAL, x var is EGFRN.
Add scatter plot and a regression line with 95%CI band.

Group scatter shape by RFGROUP, 'Severe' to square, 'Normal' to circle, set the legend title to 'Renal Impairment', put legend at bottom. Change the band color to skyblue, theme to theme_test().

Production by SAS



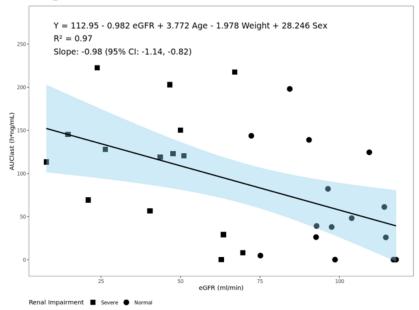
dataframe pkdata contains the following variables:
'AVAL'(type:numeric);'AGE'(type:numeric);'WEIGHT'(type:numeric)
'SEXN'(type:numeric);'RFGROUP'(type:character);'EGFRN'(type:numeric)
Create a R graph based on pkdata, y var is AVAL, x var is EGFRN.
Add scatter plot and a regression line with 95%CI band.


Group scatter shape by RFGROUP, 'Severe' to square, 'Normal' to circle, set the legend title to 'Renal Impairment', put legend at bottom. Change the band color to skyblue, theme to theme_test().

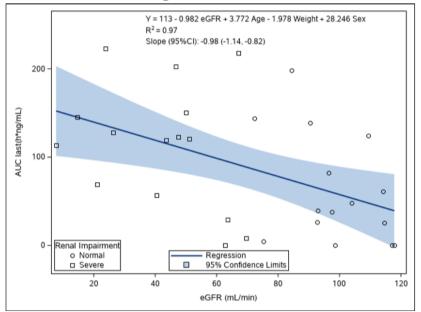
Add annotation to the graph include: formulation of the regression model AVAL as Y, EGFRN, AGE, WEIGHT and SEXN as covariates, with the coefficients, R square of the regression model, Slope of EGFRN and 95%CI.

Scatter Plot with Regression Line AVAL vs EGFR with covariates: AGE, WEIGHT, and SEXN

Production by SAS



dataframe pkdata contains the following variables:
'AVAL'(type:numeric);'AGE'(type:numeric);'WEIGHT'(type:numeric)
'SEXN'(type:numeric);'RFGROUP'(type:character);'EGFRN'(type:numeric)
Create a R graph based on pkdata, y var is AVAL, x var is EGFRN.
Add scatter plot and a regression line with 95%CI band.


Group scatter shape by RFGROUP, 'Severe' to square, 'Normal' to circle, set the legend title to 'Renal Impairment', put legend at bottom. Change the band color to skyblue, theme to theme_test().

Add annotation to the graph include: formulation of the regression model AVAL as Y, EGFRN, AGE, WEIGHT and SEXN as covariates, with the coefficients, R square of the regression model, Slope of EGFRN and 95%CI.

Set ymax to 280 and put the annotations on the top left. For the formulation if '+' a negative number, then replace by '-', Update 'AVAL' to 'Y', 'EGFRN' to 'eGFR', 'AGE' to 'Age', 'WEIGHT' to 'Weight', 'SEXN' to 'Sex'. Remove ' of EGFRN' from slope.

Production by SAS

dataframe pkdata contains the following variables:
'AVAL'(type:numeric);'AGE'(type:numeric);'WEIGHT'(type:numeric)
'SEXN'(type:numeric);'RFGROUP'(type:character);'EGFRN'(type:numeric)
Create a R graph based on pkdata, y var is AVAL, x var is EGFRN.
Add scatter plot and a regression line with 95%CI band.

Group scatter shape by RFGROUP, 'Severe' to square, 'Normal' to circle, set the legend title to 'Renal Impairment', put legend at bottom. Change the band color to skyblue, theme to theme_test().

Add annotation to the graph include: formulation of the regression model AVAL as Y, EGFRN, AGE, WEIGHT and SEXN as covariates, with the coefficients, R square of the regression model, Slope of EGFRN and 95%CI.

Set ymax to 280 and put the annotations on the top left. For the formulation if '+' a negative number, then replace by '-', Update 'AVAL' to 'Y', 'EGFRN' to 'eGFR', 'AGE' to 'Age', 'WEIGHT' to 'Weight', 'SEXN' to 'Sex'. Remove ' of EGFRN' from slope.

Remove title and subtitle, set Y label as 'AUClast(h*ng/mL)', set X label as 'eGFR (ml/min)'.

	Drug A N=XXX	Placebo N=XXX	Total N=XXX
Analysis set			
Safety	n (%)	n (%)	n (%)
Subjects ongoing	n (%)	n (%)	n (%)
Completed treatment	n (%)	n (%)	n (%)
Discontinued treatment	n (%)	n (%)	n (%)
Reason 1 for d/c treatment	n (%)	n (%)	n (%)
Reason 2 for d/c treatment	n (%)	n (%)	n (%)
Reason 3 for d/c treatment	n (%)	n (%)	n (%)
Completed study	n (%)	n (%)	n (%)
Discontinued study	n (%)	n (%)	n (%)
Reason 1 for d/c study	n (%)	n (%)	n (%)
Reason 2 for d/c study	n (%)	n (%)	n (%)
Reason 3 for d/c study	n (%)	n (%)	n (%)

```
> # Add the "Safety" row with indentation
> lyt <- analyze(</pre>
  lyt,
  vars = "USUBJID",
  afun = function(x, .N_col) format_count_pct(x, .N_col),
  subset = expression(SAFFL == "Y"),
 .indent = 1,
  .labels = c("USUBJID" = "Safety")
Error in analyze(lyt, vars = "USUBJID", afun = function(x, .N col) format count pct(x, :
 unused arguments (subset = expression(SAFFL == "Y"), .indent = 1, .labels = c(USUBJID = "Safety"))
> lyt <- summarize row groups( lyt, group = function(df, .N col) {</pre>
    # Filter to safety population
    safety_df <- df[df$SAFFL == "Y", ]</pre>
    n <- nrow(safety df)</pre>
    pct <- 100 * n / .N col
    return(paste0(n, " (", sprintf("%.1f", pct), "%)"))
    label = " Safety" # Using spaces for indentation
Error in summarize_row_groups(lyt, group = function(df, .N_col) { :
  unused argument (group = function(df, .N col) {
    safety_df <- df[df$SAFFL == "Y", ]</pre>
    n <- nrow(safety_df)</pre>
    pct <- 100 * n/.N col
    return(paste0(n, " (", sprintf("%.1f", pct), "%)"))
})
> lyt <- add_row_groups(lyt, "Analysis set")</pre>
Error in add row groups(lyt, "Analysis set") :
  could not find function "add row groups"
```

	Drug A N=XXX	Planto N-XXX	N-XXX
Analysis set			
Saliny	*6.0	0.03	100
Subjects respring	*(%)	=00	100
Completed treatment	800	0.00	100
Discontinued treatment	450	0.09	100
Region 1, for dis treatment	m(%)	n (%)	100
Reason 2 for dis treatment	400	0.00	4.000
Brason I for dis treatment	+619	0.00	100
Completed enally	*09	+09	100
Discontinued study	+010	m (59)	4(%)
Reason I for dir study	+00	m (%)	+(%)
Reason 2 for dic study	80%	0.09	100
Region 7 for dis study	400	0.09	+00

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

▼ Code

```
lyt <- basic_table(show_colcounts = TRUE) %>%
 2
      split_cols_by(
 3
        "ACTARM",
       split fun = add overall level("All Patients", first = FALSE)
     ) %>%
 5
      count_occurrences(
       "EOSSTT",
       show labels = "hidden"
      ) %>%
 9
10
      analyze_vars(
11
       "DCSREAS",
12
       .stats = "count_fraction",
13
       denom = "N_col",
14
       show_labels = "hidden",
15
        .indent_mods = c(count_fraction = 1L)
16
17
    result1 <- build table(lyt = lyt, df = adsl)
18
19 result1
```

	A: Drug X (N=134)	B: Placebo (N=134)	C: Combination (N=132)	All Patients (N=400)
COMPLETED	68 (50.7%)	66 (49.3%)	73 (55.3%)	207 (51.7%)
ONGOING	24 (17.9%)	28 (20.9%)	21 (15.9%)	73 (18.2%)
DISCONTINUED	42 (31.3%)	40 (29.9%)	38 (28.8%)	120 (30.0%)
ADVERSE EVENT	3 (2.2%)	6 (4.5%)	5 (3.8%)	14 (3.5%)
DEATH	25 (18.7%)	23 (17.2%)	22 (16.7%)	70 (17.5%)
LACK OF EFFICACY	2 (1.5%)	2 (1.5%)	3 (2.3%)	7 (1.8%)
PHYSICIAN DECISION	2 (1.5%)	3 (2.2%)	2 (1.5%)	7 (1.8%)
PROTOCOL VIOLATION	5 (3.7%)	3 (2.2%)	4 (3%)	12 (3%)
WITHDRAWAL BY PARENT/GUARDIAN	4 (3%)	2 (1.5%)	1 (0.8%)	7 (1.8%)
WITHDRAWAL BY SUBJECT	1 (0.7%)	1 (0.7%)	1 (0.8%)	3 (0.8%)

```
1 vars <- c("AGE", "AGEGR1", "SEX", "ETHNIC", "RACE", "BMRKR1")
    var labels <- c(
      "Age (yr)",
      "Age Group",
      "Sex",
      "Ethnicity",
      "Race",
      "Continous Level Biomarker 1"
 9
10
    result <- basic_table(show_colcounts = TRUE) %>%
     split_cols_by(var = "ACTARM") %>%
13
      add_overall_col("All Patients") %>%
14
      analyze_vars(
       vars = vars,
15
       var_labels = var_labels
17
     ) %>%
18
      build_table(adsl)
19
20 result
```

▼ Code

	A: Drug X (N=134)	B: Placebo (N=134)	C: Combination (N=132)	All Patients (N=400)
Age (yr)				
n	134	134	132	400
Mean (SD)	33.8 (6.6)	35.4 (7.9)	35.4 (7.7)	34.9 (7.4)
Median	33.0	35.0	35.0	34.0
Min - Max	21.0 - 50.0	21.0 - 62.0	20.0 - 69.0	20.0 - 69.0
Age Group				
n	134	134	132	400
18-40	113 (84.3%)	103 (76.9%)	106 (80.3%)	322 (80.5%)
41-64	21 (15.7%)	31 (23.1%)	25 (18.9%)	77 (19.2%)
>=65	0	0	1 (0.8%)	1 (0.2%)

TSIDS01: Subject Disposition; Randomized Analysis Set (Study ABC1001)				
	Drug A (N=134)	Placebo (N=134)	Total (N=268)	
Analysis set				
Safety	134 (100.0%)	134 (100.0%)	268 (100.0%)	

[tsids01v1.rtf][tsids01.R] 27MAR2025, 06:04

	Drug A N=XXX	Planto N-XXX	Total N-XXX
Analysis set			
Saliny	*66	0.03	100
Subjects respring	*(%)	=00	100
Completed treatment	100	0.09	100
Discontinued treatment	m (%)	0.09	100
Reason 1, for dis treatment	m(%)	n (%)	100
Region 2 for dis treatment	400	0.00	4.00
Reason I for dis treatment	+64	0.00	100
Completed enalty	+09	m (%)	100
Discontinued study	+00	m (59)	+0%
Reason I for dis study	+174	m (%)	2222
Reason 2 for dic study	80%	0.09	100
Reason 7 for dis study	# C10	0.09	+00

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

Refer to the attached sample code, use var_labels for "Analysis" and in_rows for "Safety".

TSIDS01: Subject Disposition	on; Randomized Analysis Set (Study ABC1001)	
	Drug A	Placebo	Total
	N=134	N=134	N=268
Analysis set			
Safety	134 (100.0%)	134 (100.0%)	268 (100.0%)

[tsids01v2.rtf][tsids01.R] 27MAR2025, 06:04

	Drug A N=XXX	Plante N-XXX	Total N-XXX
Analysis set			
Saliny	*66	10.00	100
Subjects respring	*(%)	=00	+(%)
Completed treatment	800	0.00	100
Discontinued treatment	m (%)	0.09	100
Reason 1, for dis treatment	m(%)	0.09	100
Region 2 for dis treatment	400	0.00	4.00
Reason I for dis treatment	+64	0.00	100
Completed enalty	+09	mC9	100
Discontinued study	# (*id)	m (**)	+0%
Reason I for dix study	+79	m(%)	*(%)
Reason 2 for dic study	80%	0.09	2222
Region J. Ser d'il stedii	4.00	0.00	100

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

Refer to the attached sample code, use var_labels for "Analysis" and in_rows for "Safety".

Remove "()" from the header.

TSIDS01: Subject Disposition; Randomized Analysis Set (Study ABC1001)				
	Drug A N=134	Placebo N=134	Total N=268	
Analysis set Safety	134 (100.0%)	134 (100.0%)	268 (100.0%)	
Subjects ongoing	24 (17.9%)	28 (20.9%)	52 (19.4%)	

[tsids01v3.rtf][tsids01.R] 27MAR2025, 06:36

	Drug A N=XXX	Planto N-XXX	Total N-XXX
Analysis set			
Saliny	*66	0.03	100
Subjects respring	*(%)	=00	100
Completed treatment	100	0.09	100
Discontinued treatment	m (%)	0.09	100
Reason 1, for dis treatment	m(%)	n (%)	100
Region 2 for dis treatment	400	0.00	4.00
Reason I for dis treatment	+64	0.00	100
Completed enalty	+09	m (%)	100
Discontinued study	+00	m (%)	+0%
Reason I for dix study	+79	n(%)	*(%)
Reason 2 for dic study	80%	0.09	2222
Region J. Ser d'il stedii	4.00	0.09	100

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

Refer to the attached sample code, use var_labels for "Analysis" and in_rows for "Safety".

Remove "()" from the header.

Add a blank row, then add ongoing subjects count with EOSSTT = ONGOING.

SIDS01: Subject Disposition; Randomized Analysis Set (Study ABC1001)				
	Drug A	Placebo	Total	
	N=134	N=134	N=268	
Safety	134 (100.0%)	134 (100.0%)	268 (100.0%)	
Subjects ongoing	24 (17.9%)	28 (20.9%)	52 (19.4%)	
Completed treatment	51 (38.1%)	46 (34.3%)	97 (36.2%)	

[tsids01v4.rtf][tsids01.R] 27MAR2025, 06:52

	Drug A N=XXX	Plante N-XXX	N-XXX
Analysis set			
Saliny	*66	0.00	100
Subjects respring	*(%)	m (%)	100
Completed treatment	100	0.00	100
Document names	m (%)	0.09	100
Reason 1, for d'is treatment	m(%)	0.09	100
Reason 2 for dis treatment	400	0.00	4.000
Reason I for dis treatment	+010	0.00	100
Completed endy	+09	m (**)	100
Discontinued study	+00	m (50)	100
Reason I for dir study	+174	m (%)	+00
Reason 2 for dic study	80%	0.09	100
Reason I for dis study	# C10	0.00	+00

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

Refer to the attached sample code, use var_labels for "Analysis" and in_rows for "Safety".

Remove "()" from the header.

Add a blank row, then add ongoing subjects count with EOSSTT = ONGOING.

Add a blank row, then add Completed treatment with EOTSTT = COMPLETED.

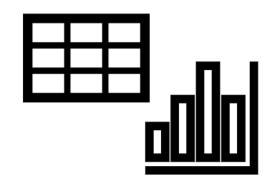
TSIDS01: Subject Disposition; Randomized Analysis Set (Study ABC1001)						
-	Drug A	Placebo	Total			
	N=134	N=134	N=268			
Analysis set						
Safety	134 (100.0%)	134 (100.0%)	268 (100.0%)			
Subjects ongoing	24 (17.9%)	28 (20.9%)	52 (19.4%)			
Completed treatment	51 (38.1%)	46 (34.3%)	97 (36.2%)			
Discontinued treatment	49 (36.6%)	40 (29.9%)	89 (33.2%)			
Adverse Event	11 (8.2%)	5 (3.7%)	16 (6%)			
Death	8 (6%)	5 (3.7%)	13 (4.9%)			
Lost to Follow-Up	4 (3%)	8 (6%)	12 (4.5%)			
Progressive Disease	8 (6%)	9 (6.7%)	17 (6.3%)			
Protocol Deviation	10 (7.5%)	7 (5.2%)	17 (6.3%)			
Other	8 (6%)	6 (4.5%)	14 (5.2%)			
Completed study	68 (50.7%)	66 (49.3%)	134 (50.0%)			
Discontinued study	42 (31.3%)	40 (29.9%)	82 (30.6%)			
Adverse Event	6 (4.5%)	7 (5.2%)	13 (4.9%)			
Death	11 (8.2%)	6 (4.5%)	17 (6.3%)			
Lost to Follow-Up	3 (2.2%)	4 (3%)	7 (2.6%)			
Progressive Disease	12 (9%)	7 (5.2%)	19 (7.1%)			
Protocol Deviation	5 (3.7%)	8 (6%)	13 (4.9%)			
Other	5 (3.7%)	8 (6%)	13 (4.9%)			

[tsids01v5.rtf][tsids01.R] 27MAR2025, 06:58

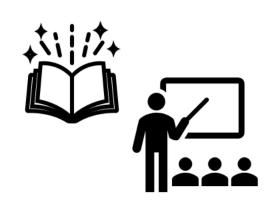
	Drug A N=XXX	Planto N-XXX	Total N-XXX
Analysis set			
Saliny	*66	0.03	100
Subjects respring	*(%)	=00	100
Completed treatment	100	0.09	100
Discontinued treatment	m (%)	0.09	100
Reason 1, for dis treatment	m(%)	n (%)	100
Region 2 for dis treatment	400	0.00	4.00
Reason I for dis treatment	+64	0.00	100
Completed enalty	+09	m (%)	100
Discontinued study	+00	m (59)	2222
Reason I for dis study	+174	m (%)	+0%
Reason 2 for dic study	80%	0.09	100
Reason 7 for dis study	# C10	0.09	+00

Create a table using rtables and tern package, refer to the attached mockup. Use adsl dataset, TRT01P as group var, SAFFL = Y for the safety row. Start with the first 2 rows.

Refer to the attached sample code, use var_labels for "Analysis" and in_rows for "Safety".


Remove "()" from the header.

Add a blank row, then add ongoing subjects count with EOSSTT = ONGOING.


Add a blank row, then add Completed treatment with EOTSTT = COMPLETED.

Add count for EOT reasons by DCTREAS, and add Completed study and EOS reasons below. The reasons should be sorted as "Adverse Event", "Death", "Lost to Follow-Up", "Progressive Disease", "Protocol Deviation" and "Other".

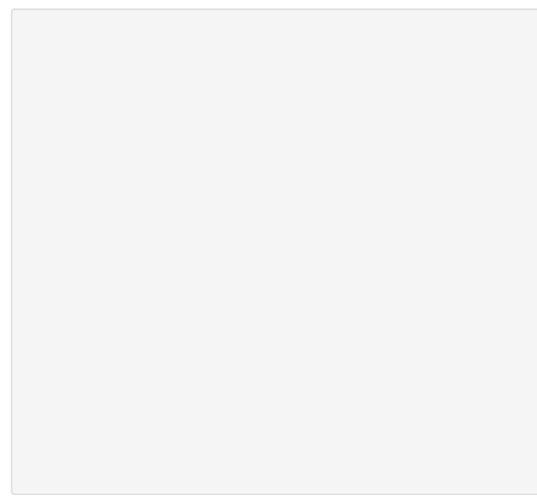
R for TLG

R Shiny

R Learning

SAS TO R CODE TRANSLATOR

SAS code


data c; merge a b; by group; run;

R code

Some explainations
Load the dplyr package for data manipulation library(dplyr)
Assuming datasets 'a' and 'b' are already loaded into R # Merge datasets 'a' and 'b' by the 'group' variable # full_join ensures that all rows from both datasets are included c <- full_join(a, b, by = "group")
The resulting dataset 'c' now contains the merged data

Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Here is the equivalent R code using the `tidyverse` syntax, with detailed comme explain each step:

```
# Load the tidyverse package, which includes dplyr for data manipulation library(tidyverse)

# Assuming 'a' and 'b' are data frames already loaded in R

# Merge the two data frames 'a' and 'b' by the common column 'group'

# The `by` argument specifies the column(s) to merge by

# The `full_join` function from dplyr performs a full outer join, similar to SAS's mer ge

c <- full_join(a, b, by = "group")

# The resulting data frame 'c' contains all rows from both 'a' and 'b',

# with missing values filled in where there is no match in the other data frame
```

Explanation:

- 1. **`library(tidyverse)`**: Loads the `tidyverse` package, which includes `dplyr` for data manipulation.
- 2. **`full_join(a, b, by = "group")`**: This function merges the two data frames `a` a nd `b` by the column `group`. The `full_join` function performs a full outer join, whi ch means it includes all rows from both data frames, filling in `NA` where there are n o matches.
- 3. **`c <- ...`**: Assigns the result of the merge to a new data frame `c`.

This R code maintains the structure of the original SAS code and uses `tidyverse` synt ax for clarity and consistency.

Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Link to API of AI model with api_key and api_url, and add the translating functionality based on the API.

Translation Process Explanation:

How the R Code Works:

The SAS code provided merges two datasets (a and b) by a common variable group. In R, the equivalent operation can be performed using the dplyr package from the tidyverse, specifically the full_join() function. This function combines rows from two datasets based on a common key (group in this case), ensuring all rows from both datasets are included in the result.

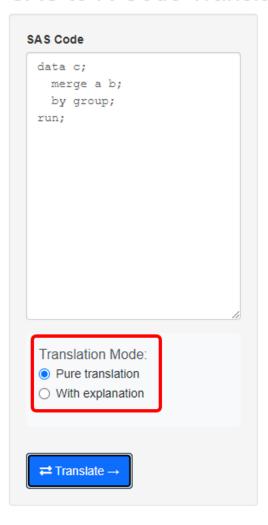
R Code:

```
# Load the tidyverse package
library(dplyr)

# Assuming datasets 'a' and 'b' are already loaded in the R environm
ent

# Merge datasets 'a' and 'b' by the 'group' column
c <- full_join(a, b, by = "group")

# Explanation:
# - `full_join()` merges two datasets, keeping all rows from both da
tasets.
# - The `by = "group"` argument specifies that the merge should be d
one based on the 'group' column.
# - The result is stored in a new dataset `c`.
```

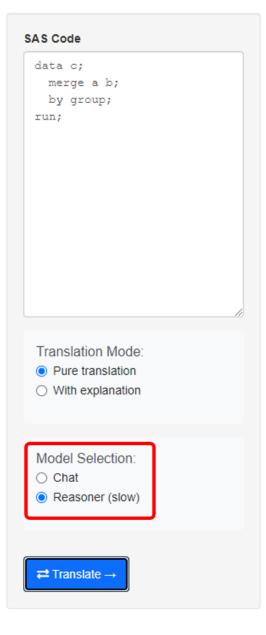

1. library(dplyr): Loads the dplyr package, which provides the full join()

Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Link to API of AI model with api_key and api_url, and add the translating functionality based on the API.

Highlight R code with Rmarkdown format and add a copy button on topright.

R Code a <- merge(b, c, by = "group", all = TRUE)



Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Link to API of AI model with api_key and api_url, and add the translating functionality based on the API.

Highlight R code with Rmarkdown format and add a copy button on topright.

Add selection of pure translation (display R code only) and with explanation.


```
R Code
    a (- merge b, c, by = "group", all = TRUE)
```


Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Link to API of AI model with api_key and api_url, and add the translating functionality based on the API.

Highlight R code with Rmarkdown format and add a copy button on topright.

Add selection of pure translation (display R code only) and with explanation.

Add selection of chat model and reasoner model.

SAS code	K code
date of compact in the glover	Nove exploration That he day pathing for the inequation
	The country defeator is and to are attends to take att. The country defeator is and to be place you or asset The country to and it to be for the country defeator are record The Country to the attended for the country defeator are record The country defeator is come contains the manipul defea

Create a R shiny app, refer to the attached sketch, to translate SAS code to R code. UI first.

Link to API of AI model with api_key and api_url, and add the translating functionality based on the API.

Highlight R code with Rmarkdown format and add a copy button on topright.

Add selection of pure translation (display R code only) and with explanation.

Add selection of chat model and reasoner model.

Add a chat-box for extra requests for the translation, like specific package. Also, update the title to look better, add Jiaqi and AI as author.

Convert your SAS code to R with ease

Developed by Jiaqi Song and Al

SAS Code

```
data c;
merge a b;
by group;
run;
```

Extra request

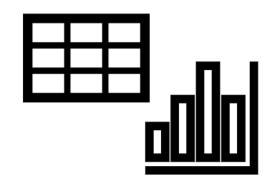
use <u>dplyr</u> package

Translation Mode:

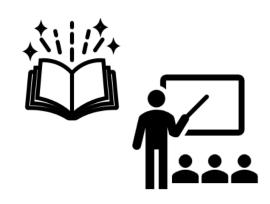
- O Pure translation
- With explanation

Model Selection:

- O Chat
- Reasoner (slow)


 \rightleftarrows Translate \rightarrow

```
library(dplyr)
common_vars <- intersect(names(a), names(b)) %>%
  setdiff("group")
c <- full join(a, b, by = "group", suffix = c(".a", ".b")) %>%
 ) %>%
```


Key features:

- full join ensures no data loss from either dataset
- coalesce replicates SAS's value precedence (b overwrites a)
- Suffix handling maintains original column names
- Efficient piping structure matches SAS's single data step

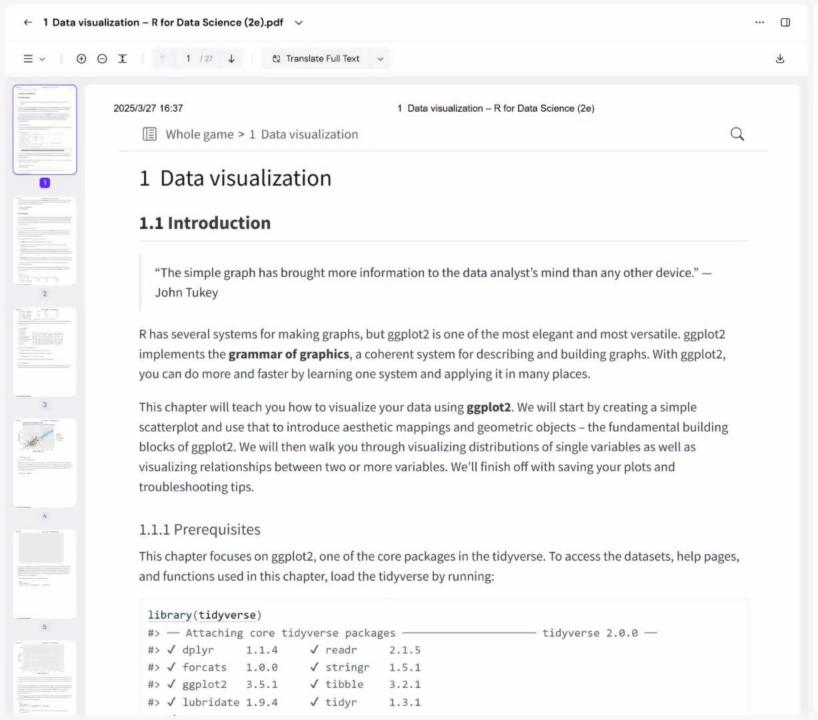
R+AI

R for TLG

R Shiny

R Learning

R Learning


Traditional way

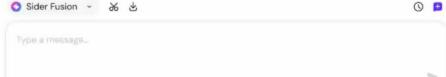
Read Books

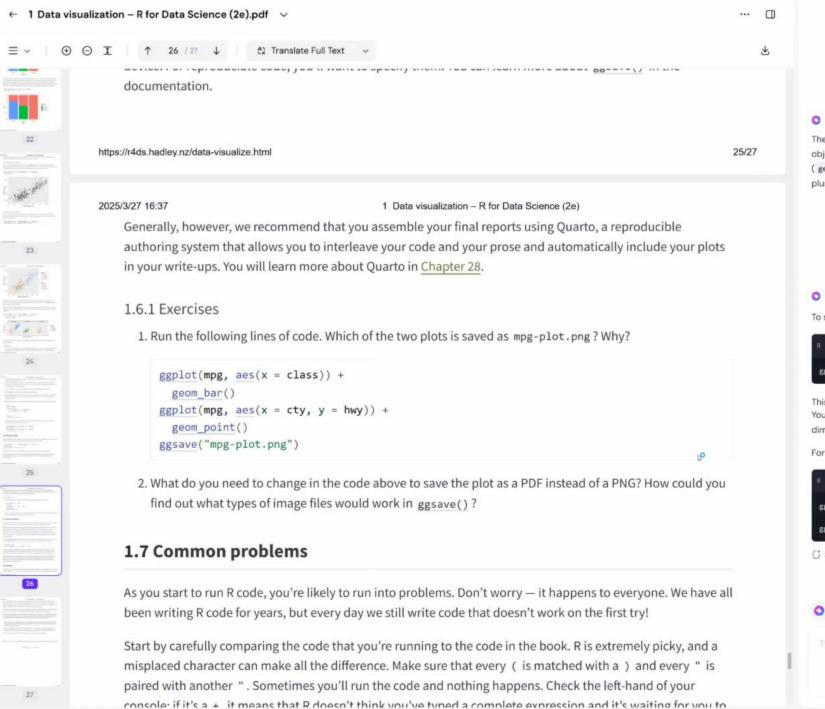
Al empowered way

Smart Reading with Al Assistance

visualizations, starting with scatterplots and progressing to visualizations of variable distributions and relationships. Users are guided to load the tidyverse and necessary packages, including palmerpenguins for dataset access and ggthemes for color palettes. Key terms like variable, value, observation, and the concept of tidy data are defined. The chapter uses the penguins dataset to explore relationships between flipper lengths and body masses across species, ultimately guiding readers to recreate a specific visualization. Initial steps involve loading data and creating a ggplot object, setting the stage for additional layers and custom visualizations.

Related Questions


- · What is ggplot2 and why is it important for data visualization?
- How many columns are in the penguins dataset and what are some of them?
- · What are the prerequisites for working with ggplot2 in this chapter?


summarize this page with bullets

O Sider Fusion

Here's a summary of the provided content, using bullet points:

- Introduction to ggplot2: The chapter introduces ggplot2, a versatile and elegant data visualization package in R, based on the grammar of graphics.
- Core Concepts: It covers creating scatterplots, visualizing variable distributions, and relationships between variables
 55. Key terms like variable, value, observation, and tidy data are defined
 55.
- Prerequisites: The chapter requires loading the tidyverse package
 it may need to be installed if it's not already available. The palmerpenguins and ggthemes packages are also used
 .
- Penguins Dataset: The penguins dataset from the palmerpenguins package is used to explore relationships between flipper length and body mass across different penguin species
- Creating a ggplot: The process starts with creating a ggplot() object and adding layers to it, such
 as geometric objects (geom_point() , geom_smooth()) 55 .
- Aesthetic Mappings: The mapping argument in ggplot() defines how variables are mapped to visual properties like x, y, and color
- Adding Aesthetics and Layers: Aesthetics can be added to geom_point() to represent species with different colored points ⁵⁵ . geom_smooth() can add a smooth curve to display the relationship between variables ⁵⁵ .
- Improving Plots: The chapter explains how to use different shapes for each species and improve labels using labs() and scale_color_colorblind()
- Visualizing Distributions: It covers visualizing distributions of categorical variables using bar charts (geom_bar()) and numerical variables using histograms (geom_histogram()) and density plots (geom_density()) ³⁷
- · Visualizing Relationships: Discusses visualizing relationships between numerical and categorical

+ geom_point() #> Warning: Removed 2 rows containing. what does this "+" mean O Sider Fusion The + symbol in the context of ggplot2 code, as shown in the example, is used to add layers to a plot object 39 . It indicates that you are adding a new component, such as a geometric object (geom_point()), aesthetic mappings, or other modifications, to the existing ggplot() object 37 . The plus sign must be placed at the end of the line, not the start " how to save ggplot to png O Sider Fusion To save a ggplot plot as a PNG image, you can use the ggsave() function 55. Here's the basic syntax: ggsave(filename = "your_plot_name.png") This will save the most recently created plot to your working directory as "your_plot_name.png" "" You can specify the width and height arguments for reproducible code; otherwise, it will take the dimensions from the current plotting device " For example: ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) + ggsave(filename = "penguin-plot.png") Save as Note Q 66 C ○ Sider Fusion ~ ※ 坐 0

R Learning

Traditional way

Read Books

Watch Videos

Al empowered way

Al Assistance

Smart Reading with Video Insights through Al Summarization

Subtitles

00:00 next talk is going to be by Gabriel

00:02 Becker who will be speaking to us about

00:05 our tables leveraging data visualization

00:07 Concepts to declare and create clinical

00:09 trial tables and I think they will be

00:12 speaking live I see you're here and

00:16 share your slides and get started yep

00:26 that do you see the schedule or do you

00:36 yeah so this is going to be a pretty

00:14 unmuted so yeah

00:29 see my slides

00:31 here slides great

O

Faceting

The Old Ways

- Partition the data
 - Mutually Exclusive
 - Exhaustive (minus NA exclusion)
 - Based on Categorical Variable

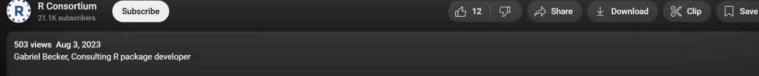
lyt <- basic_table(show_colcounts = TRUE) %>% split cols by("ARM") %>% analyze("AGE", mean, format = "xx.xx")

> build_table(lyt, DM) B: Placebo C: Combination A: Drug X (N=121) (N=106) (N=129) 33.02 34.57 34.91

New Hotness

- Map dataset to arbitrary subsets

 - No need to be exhaustive


-valname, -label, -levelcombo, -exargs, "A_B", "Arms A+B", c("A: Drug X", "B: Placebo"), list(), "A_C", "Arms A+C", c("A: Drug X", "C: Combination"), list()) lyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", split_fun = add_combo_levels(combodf)) %>% analyze("AGE")

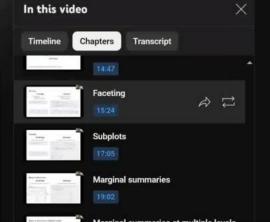
> bu1	ld_table(lyt, A: Drug X (N=121)	DM) B: Placebo (N=106)	C: Combination (N=129)	Arms A+B (N=227)	Arms A+0 (N=250)
Mean	34.91	33.02	34,57	34.03	34.73

Can overlap

Based on whatever I feel like

Rtables: Leveraging Data Visualization Concepts To Declare And Create Clinical Trial Tables

combodf <- tribble(


Reporting tables form a central component of regulatory filings in the pharmaceutical industry. These tables are often complex, both in their conceptual structure and in the computations required to generate their individual cell values. In this session presentation, Gabe introduced the rtables package and show how visualization concepts, particularly faceting and the grammar of graphics, apply to tables generally and inform rtables' ability to succinctly declare and create complex structured tables such as those included in clinical trial fillings. Gabe also gives a brief update of the work of the R Consortium's R Tables For Regulatory Submission (RTRS) working group.

Main Sections

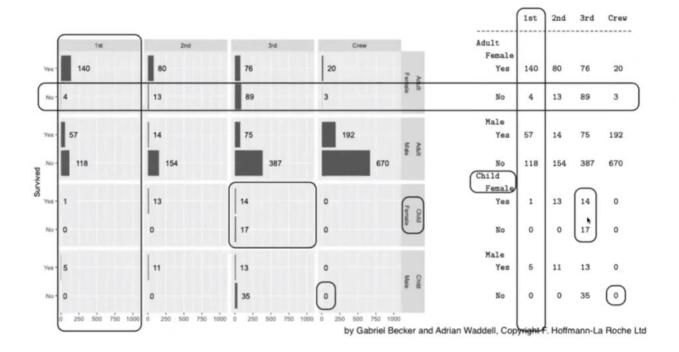
generalizations made. I will focus on these generalizations to answer the user's query.

Faceting, according to the video, traditionally involves partitioning data into mutually exclusive and exhaustive subsets. However, rtables generalizes this concept, offering the following benefits:

- 1. Overlapping Facets: rtables allows facets to overlap, which is useful for creating categories like "all patients" or combining treatment arms for analysis.
- 2. Dissimilar Subplots: Unlike typical faceted plots where subplots are uniform, rtables enables different types of content within facets (e.g., mean and range). It also allows columns to have different meanings.
- 3. Marginal Summaries: rtables facilitates marginal summaries, generating group summaries and incorporating them into tables. It can handle multiple levels of information being marginally summarized, which is difficult to achieve in plots.

CC EN

Watch Highlights


Billingual

0 % @

Tables Are Faceted Data Visualizations

- 02:41 Data visualization is crucial for creating effective clinical trial tables. Understanding the relationship between tables and faceted visualizations can enhance reporting and data interpretation.
- 04:05 Tables can be viewed as faceted plots, which represent data through a structured layout of rows and columns.

 Understanding this relationship helps in effectively visualizing and interpreting data.
- 08:09 Defining a table structure involves a small set of low-level verbs that can be combined for complex functionalities. This process includes declaring faceting and deriving cell values effectively.
- 12:13 Data visualization can leverage complex structured tables for effective analysis, particularly in clinical trials and exploratory data analysis. This approach enhances the understanding of faceted data visualizations.
- 16:18 Faceting in data visualization allows for multiple subplots to be created for different categories, providing a clearer analytical perspective. This technique goes beyond basic comparisons, showcasing relationships in various data dimensions.
- 20:22 The TLG catalog is an opensource resource that aids in generating tables for clinical trial analysis. It includes 225 variants

R Learning

Traditional way

Read Books

Watch Videos

Ask Experts

Al empowered way

Smart Reading with Al Assistance

Video Insights through Al Summarization

24/7 AI Expert Support AI搜索

亦匠

What does "+" mean in R package ggplo t2?

In the R package ggplot2, the "+" operator is used to add new layers to a plot. It allows you to sequentially add multiple layers of elements (such as data, aesthetics, and geoms) to build up a complex visualization.

For example:

```
library(ggplot2)
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y
= hwy
```

示图▼。

图层叠加

1. **创建画布**: 首先使用 ggplot() 函数创建一个绘图空间,指定数据和基本的映射关系 [2]▼。

What does "+" mean in R package ggplot2?

- 2. 添加图层: 随后使用 geom_ 系列函数添加 几何对象图层, 如 geom_point() 添加散点 图层, geom_line() 添加线条图层等 [3√。
- 3. 修饰图层: 进一步使用 scale_ 系列函数调整标度,如颜色、大小等; theme()函数调整主题,如背景、字体等;以及 labs()函数添加图例和标题等 [5]。

示例

R

① 复制

#加载ggplot2包

library(ggplot2)

创建基础图层, 指定数据和映射

ggplot(data = mtcars, aes(x = wt, y = mpg))

#添加散点图层

接着问

What does the plus sign mean in R package GG plot two?

It's a way to piece together a plot. You can use it to add layers like geom_bar() for bar charts or geom_line() for line graphs. It lets you combine different visual elements to create the final plot you want. Have you used it to make any interesting plots?

R Learning

Traditional way

Read Books

Watch Videos

Ask Experts

Al empowered way

Smart Reading with Al Assistance

Video Insights through Al Summarization

24/7 AI Expert Support Customized Learning I want to learn the ggplot2 package in R. I have a basic understanding of R, so please create a 4-week study plan for me.

4-Week ggplot2 Learning Plan

Week 1: Introduction and Basic Plotting

Objective: Understand ggplot2 basics, including concepts and basic plots.

Day 1: Introduction to ggplot2

Day 2: Basic Scatter Plots

Day 3: Customizing Plots

Day 4: Bar Plots and Histograms

Day 5: Saving and Exporting

Week 2: Aesthetic Mappings and Customizations

Objective: Master aesthetic customizations and understand mapping data.

Day 1: Aesthetic Mappings

Day 2: Enhanced Plots

Day 3: Complex Charts

Day 4: Colors and Scales

Day 5: Coordinate Systems

Day 4: Colors and Scales

Day 5: Coordinate Systems

Week 3: Faceting, Themes, and Extensions

Objective: Learn to use faceting, themes, and package extensions.

Day 1: Faceting

Day 2: Themes

Day 3: Theme Elements

Day 4: Extensions

Day 5: Theme Practice

Week 4: Advanced Techniques and Integration

Objective: Apply advanced techniques and integrate with other R packages.

Day 1: Complex Visualizations

Day 2: Package Integration

Day 3: Interactive Elements

Day 4: Review

Day 5: Final Project

More details about Week 1, Day 3 and 4

Detailed ggplot2 Learning Plan

Week 1: Introduction and Basic Plotting

Objective: Understand ggplot2 basics, including concepts and basic plots.

Day 3: Customizing Plots

- Understanding the layers concept
- Working with colors and titles
- Basic geoms: geom_point(), geom_line()

Day 4: Bar Plots and Histograms

- Creating bar plots with geom_bar()
- Building histograms with geom_histogram()
- Understanding distributions

Start the learning of week 1 day 4 as a demo. You should give me introduction, syntax, examples and exercises. Start with the first bullet point. Deliver as .rmd

Start the learning of week 1 day 4 as a demo. You should give me introduction, syntax, examples and exercises. Start with the first bullet point. Deliver as .rmd

I'll create a comprehensive lesson for Week 1, Day 4, focusing on bar plots.

This lesson covers the first part of bar plots in detail. Would you like to proceed with the histogram portion next, or would you like to practice with these concepts first?

Introduction

Basic Syntax

Examples

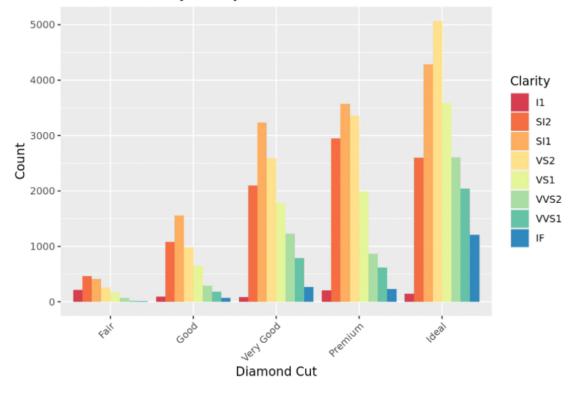
Practice Exercises

Exercise 1: Basic Bar Plot

Exercise 2: Customized Bar Plot

Exercise 3: Grouped Rar Plot

Challenge Task


Your Turn!

Tips for Success

Resources

Exercise 3: Grouped Bar Plot

Diamond Cuts by Clarity

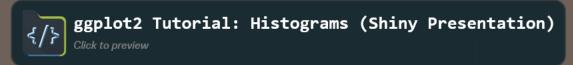
Challenge Task

Create a stacked percentage bar plot showing the proportion of clarity categories within each cut type:

```
ggplot(diamonds, aes(x = cut, fill = clarity)) +
```

Start the learning of week 1 day 4 as a demo. You should give me introduction, syntax, examples and exercises. Start with the first bullet point. Deliver as .rmd

I'll create a comprehensive lesson for Week 1, Day 4, focusing on bar plots.

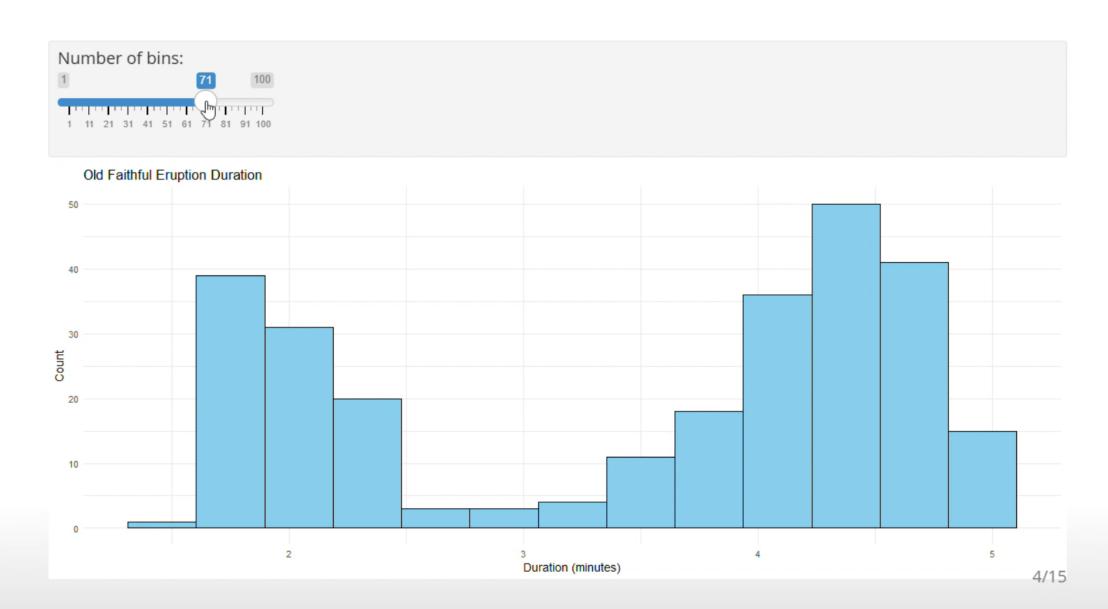


This lesson covers the first part of bar plots in detail. Would you like to proceed with the histogram portion next, or would you like to practice with these concepts first?

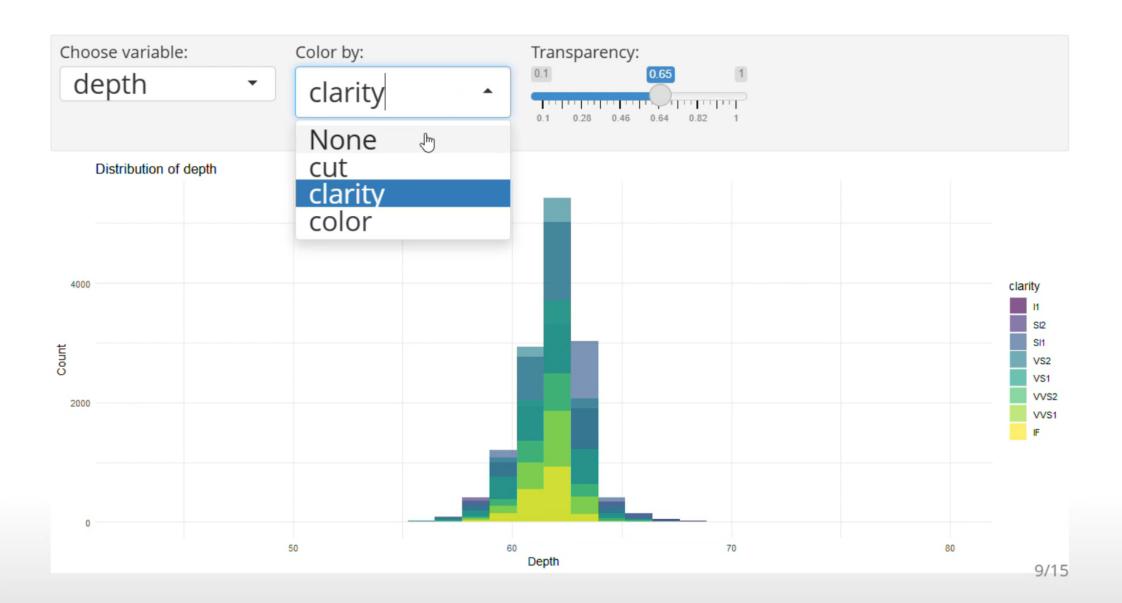
Proceed with histogram. Create the RMarkDown file in Shiny presentation format.

I'll create a comprehensive lesson for Week 1, Day 4, focusing on Histograms.

Would you like me to:


- Include different transition effects?
- ◆ Add more keyboard shortcuts?
- ◆ Adjust the sizing of specific elements?

Histograms in ggplot2

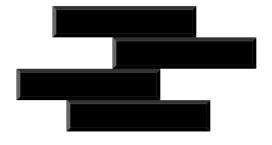

Week 1 - Day 4 | Lesson 2

Jiaqi 2025-03-27 B

Interactive Example: Bin Width Effect

Interactive Exercise: Create Your Histogram

I'll draw swim plot in an oncology clinical trial. Give me a learning plan for ggplot2 in R and other things needed for a swim plot. Summarize in a mindmap.



Tips

1. Build from the bottom, not as a whole

Build from the bottom

Build as a whole

Tips

- 1. Build from the bottom, not as a whole
- 2. Start a new chat, when you notice the AI has reached a dead end

Tips

- 1. Build from the bottom, not as a whole
- 2. Start a new chat, when you notice the AI has reached a dead end
- 3. Try something that you think you can't with the help of Al
- 4. Always follow the guideline of using AI in your company

Thank you

If you have more questions, please contact: Jiaqi Song jsong67@jnj.com

Johnson & Johnson Innovative Medicine

